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1 Introduction and Motivation
Many times we find ourselves unable to recall the most ap-
propriate word for describing the idea/concept we have in our
minds. This might just be a recall problem or might be due to
our lack on knowledge in that language. And it turns out to be
a very common problem for people who produce language. In
such cases, dictionaries might not be the most perfect solution
as it is easy to find the meaning of a particular word but it is
almost impossible to find a word given its meaning. Hence,
to address this issue we propose the idea of building a reverse
dictionary.

2 Overview and Approach
A reverse dictionary is search engine which finds the seman-
tically most equivalent word given its meaning (as an input to
the program). And the approach that we follow is yet interest-
ingly simple. The program is divided into two main sections.
The first section of the program is to model the vocabulary and
the second section implements searching through the dictionary
data-set. Below we have discussed these sections in a greater
detail.

First, we use a trained vectorization model to convert all
the words in the vocabulary of the language into vectors (of a
few hundred dimensions). And these vectors are then plotted
into the hyperspace such that words with similar meanings are
in close proximity to each other. Next we iterate over all the
definitions present in the dictionary to find the most similar
ones to our input phrase. This step involves checking similarity
between two sentences. Basically, we calculate the Euclidean
distance that we have to travel in the hyperspace, for converting
all the words of one sentence to the words of the other one.

Using both the above steps we try to find semantically the
most similar definitions, hence semantically the most appropri-
ate word by querying for the corresponding key in the dictionary
data-set.

Related work
Implementing a Reverse Dictionary, based on word definitions,
using a Node-Graph Architecture [1] used one method which
makes a graph using the dictionary definitions and then upon
query, searches the graph for a word and computes similarity
based on the depth. This method is not scalable, as the paper
says. Another recent method is using a Recurrent Neural Net-
work or a Long Short Term Memory Neural network, like done
by [6] and training them with dictionary definition to output
the desired word. These models take a lot of time to train,
but give good results. Other methods use the semantic sim-
ilarity between two words, to get the similarity beteween the

query sentence and all the dictionary definitions and then re-
port the K nearest words whose definition was the most similar
to the query. Similarity between words is computed using word
embeddings, like GloVe: Global Vectors for Word Representa-
tions [4] orWord2Vec [7] (both of which encode contextual and
hence semantic similarity between words in their embeddings)
or using WordNet [8] as is used in[5] by measuring the distance
and depth from the root between disambiguated words of the
query in the wordnet graph. These similarity measures are then
used to measure the similarity between sentences. We use one
such measure to make a reverse dictionary.

3 Methods
3.1 Word Embeddings

Figure 1. An illustration of the word mover’s distance. All
non-stop words (bold) of both documents are embedded into a
word2vec space. The distance between the two documents is
the minimum cumulative distance that all words in document 1
need to travel to exactly match document 2.

Hence, more the sentences are similar, lesser will be the
distance between them. Therefore, using this we find
semantically the most similar definitions in the dictionary
data-set.

Word embedding is one of the most popular representation of
document vocabulary. It is capable of capturing the context of
a word in a document, and also semantic/syntactic similarities.
Word embeddings are nothing but the vector representations
of the words. Where the vectors are plotted in a few hun-
dred dimensional hyperspace with the property that, words of
similar semantics are in closer proximity to each other in the
hyperspace.

In our approach, we use Word2Vec [7], which is one of
the most popular techniques to learn word embeddings using a
shallow neural network. We use a pre-trainedWord2Vec model
which is developed by Google and is trained on Google News
Dataset. The main reason behind choosing this pre-trained
model was because news articles contain formal texts which are
good for checking definition similarities.
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Query Result Target Word
to feel happiness or pleasure ecstasy, euphoria enjoy
the word for painting music theatre sculpture and other creative activities artwork art
to move your mouth or jaw up and down in break up or soften food crush chew
to think into the future and feel that is is likely that a particular event will happen enlighten expect
to take the material from something and making it into something new
rather than throwing it away revise recycle
to decide who someone is or what something is after thinking about it identify identify

3.2 Similarity Measure
Checking the similarity between sentences is the second major
component to our approach. To check for similarity, we propose
using the method - Word Mover’s Distance (WMD) [9]. The
WordMover’s Distance measures the dissimilarity between two
text documents as the minimum amount of distance that the
embedded words of one document need to travel to reach the
embedded words of another document.

3.3 Getting the Word from its concept
We use WMD to chech the similarity between the query and
all the definitions in dictionary dataset. We return the words
whose definitions are most similar to the query. i.e. We return
some k nearest neighbours of the query.

4 Experimental Analyses
Datasets
We use the dictionaries and the training data that was made pub-
lically availabe by [6] which has around 850 thousand different
definitions of around 67 thousand different words. This dataset
is compiled using dictionary definitions from five electronic
resources: Wordnet, The American Heritage Dictionary, The
Collaborative International Dictionary of English, Wiktionary
and Webster’s. The training data was made by asking some
native English speakers to describe some predecided words and
confirming the quality of each description by checking if some-
one who didn’t write the description was able to guess the target
word.

Results
Calculating WMD is slow. Estimate time to complete one
query on the whole dictionary turned out to be about 5 minutes.
Due to this, for obtaining results in a reasonable time, we
constrained the program to check only the words which start
with the target word’s first letter. Out of the 30 description
words we tested, only 6 concepts managed to find similar
meaning meaning words in the first 10 results and one target
word actually appeared in the results (the six similar words
are shown in the table below). The rest of the words were not
semantically similar to the query. This is because often the
definitions of a dictionaries try to be as accurate as possible,
whereas human descriptions of words are not. The long
definitions, extra descriptions of words in the same sentence,
all these tend to increase the dissimilarity between the query
and dictionary definitions, even though their meanings are the
same.

The six relevant results are shown in table above.

5 Discussion and Future Directions
We have shown a method to make a reverse dictionary. Heuris-
tics can be implemented to compute WMD for the dictionary
definitions as used in [9], which describes a prefetch and prune
algorithm. Different embeddings could be used trained on dif-
ferent data to improve this algorithm. A better similarity mea-
sure could be implemented that incorporates word order along
with word similarity. The results, though poor, seem promising.
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